MATHEMATICS FIRST TERM EXAMINATION QUESTIONS FOR SSS 3

EXAM QUESTIONS

MATHEMATICS FIRST TERM EXAMINATION QUESTIONS FOR SSS 3


MATHEMATICS FIRST TERM EXAMINATION QUESTIONS FOR SSS 3

Advertisements

FIRST TERM EXAMINATION 2021

SUBJECT: MATHEMATICS

⇒Join us on Telegram for more Sure and Accurate football-winning tips every day...click here

CLASS: S.S.S.3

Advertisements

 

1. ______ is a number that cannot be written as ratio.  (a) rational (b) ratio  (c)  irrational (d) irrigation

2. Simplify √12 x 3√60 x √45       (a) 540  (b) 504  (c) 545   (d) 450

3. ______ is a surd in which one or both of its terms contain a surd  (a) polynomial  (b) Binomial surd   (c)  Bracket surd  (d) Single surd

4. Given that √3 = 1.732. Evaluate  to 2 decimal places  (a) 1.51  (b) 1.15  (c) 1.05  (d) 0.15

5. Find the product of (2, 2, 4, 5)

( – 3)

( 7)

( 9)

( – 8)

(a)  4    (b)  5     (c)   6    (d) 7

6. A hotel has 8 single rooms and 14 double rooms. The cost per night of single and double rooms are N10,000 and N15,000 respectively. Use a matrix method to show how much money the hotel makes per night when full.  (a) N29,000  (b) N20,900  (c) N290,000  (d) N920,000

7. In the equation 92x-1 x 33x-1 = 27x+3  Find the value of x    (a) 3    (b) 3/2    (c) 5    (d) 9

8. A ______ matrix is a matrix in which all its elements are zero  (a) null  (b) single  (c) double  (d) basic

9. The determinant of a singular matrix is _____ (a) single  (b) zero  (c) basic  (d) double

10. Given that log10 2 =  0.3010 and log10 3 = 0.4771 find log109   (a) 0.5942  (b) 0.9542  (c)  0.9452     (d) 0.5492

11. Simplify log2 32(a) 2  (b) 3  (c) 4  (d) 5

12. Find the value of k given that Log k – log (k – 2) = log5  (a) 1 ½   (b) 2 ½   (c) 3 ½   (d) 4 ½

13. Calculate the amount if simple interest is paid yearly at 12% per annum for 3 years on a principal of   N150000   (a) N402,000   (b) N400,000  (c) N204,000   (d) N102,000

14. Calculate the interest paid on a fixed deposit of N25000, which is invested for a period of 3 years at 12% interest per annum.  (a) N100,012  (b) N10,123  (c) N10,213   (d) N10,312

15. Factorize P2 – 10P  + 25 = 0  (a) P = 2 twice  (b) P = 3 twice  (c) P = 4 twice  (d) P = 5 twice

16. Find the determinant of matrix     (a) 23     (b) 22     (c) 21     (d) 20

17. Find the inverse of

18. Identity matrix is denoted by _____ (a)

19. ______ can be expressed as exact fraction or ratio is called  (a) Rational  (b) Irrational  (c) Denominator   (d) Numerator

20. Simplify √x2y   (a) y √x   (b) y√x2   (c) x √y   (d) x√y

21. A _____ is a set of numbers or elements arranged in a rectangular array or pattern.  (a) Bracket  (b) Surds    (c)  Modular      (d) Matrix

22. Solve the simultaneous equation 9x + 4y = 17

2x +  y  =  4   (a) x = 2, y = 1  (b) x = 1, y = 2  (c) x = – 1, y = – 2  (d) x = – 2, y = – 1

23. If  A  3 x 3 matrices =    Find /A/    (a) 1   (b)  0   (c)  2   (d)  3

24. Simplify Log9 + log3  (a) 2  (b)  3  (c) 4   (d)  1

25. Solve x0.8265 =  45  (a)  10  (b) 20  (c) 100   (d) 50

26. A trader saved N50,000 in a bank that pays interest at 9½% per annum. Find the amount in the trader’s savings account after 6 years.  (a) N19,086  (b) N19,860  (c) N86,190  (d) N85,619

27. Solve the equation 2x2 + 9x = 5 (a) x = ½ or – 5 (b) x = – ½ or – 5 (c) x = ½ or 5 (d) x = 5 or 2½

28. Simplify 3√8 + 50  (a) 11 √2  (b) 2 √11  (c) √22  (d) 3 √11

29. Surds are  ______ numbers  (a) rational  (b) irrational  (c) single   (d) basic

30. Express 97530 in standard form (a) 9.75 x 104   (b) 9.75 x 103  (c) 9.75 x 10-4 (d) 9.75 x 10-3

 

SECTION B: THEORY

Answer any four questions

1. Solve the following simultaneous equation

2x – 3y + z  = 10

y – 2z =  7

x + 2y – 3z = – 9

2. Given that log10 5 = 0.699 and log103 = 0.477. Find log1045 without using table.

3. Simplify: 2 √3 + 2/ 2√3 – 2

4. Evaluate (i)  Log 7  +  2 log 2 – log280

(ii)  Log(20/9) + 2log(6/5) – log(4/25)

5. A hotel has 8 single rooms and 14 double rooms. The cost per night of single and double rooms are N10,000 and N15,000 respectively. Use a matrix method to show how much money the hotel makes per night when full.  Use a matrix method to show how much money the hotel makes per night when full.

6. Find the sum and the product of the roots of the equation

(i)    5x2 – 4x – 9 = 0

(ii)   2x2 + 9x = 6


 

Leave a Reply

Your email address will not be published. Required fields are marked *